Refinements of bounds for Neuman means with applications

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Refinements of Bounds for Neuman Means in Terms of Arithmetic and Contraharmonic Means

In this paper, we present the sharp upper and lower bounds for the Neuman means SAC and SCA in terms of the the arithmetic mean A and contraharmonic mean C . The given results are the improvements of some known results. Mathematics subject classification (2010): 26E60.

متن کامل

Optimal bounds for Neuman means in terms of geometric, arithmetic and quadratic means

*Correspondence: [email protected] 2School of Mathematics and Computation Science, Hunan City University, Yiyang, 413000, China Full list of author information is available at the end of the article Abstract In this paper, we present sharp bounds for the two Neuman means SHA and SCA derived from the Schwab-Borchardt mean in terms of convex combinations of either the weighted arithmetic and ...

متن کامل

The Optimal Convex Combination Bounds of Harmonic Arithmetic and Contraharmonic Means for the Neuman means

In the paper, we find the greatest values α1, α2, α3, α4 and the least values β1, β2, β3, β4 such that the double inequalities α1A(a, b) + (1− α1)H(a, b) < N ( A(a, b), G(a, b) ) < β1A(a, b) + (1− β1)H(a, b), α2A(a, b) + (1− α2)H(a, b) < N ( G(a, b), A(a, b) ) < β2A(a, b) + (1− β2)H(a, b), α3C(a, b) + (1− α3)A(a, b) < N ( Q(a, b), A(a, b) ) < β3C(a, b) + (1− β3)A(a, b), α4C(a, b) + (1− α4)A(a, ...

متن کامل

Optimal convex combination bounds of geometric and Neuman means for Toader-type mean

In this paper, we prove that the double inequalities [Formula: see text] hold for all [Formula: see text] with [Formula: see text] if and only if [Formula: see text], [Formula: see text] , [Formula: see text] and [Formula: see text] , where [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text], [Formula: see text] are the Toader, geometric, arithmetic and two Neu...

متن کامل

Bounds for the Arithmetic Mean in Terms of the Neuman, Harmonic and Contraharmonic Means

SB (a, b) = { √ b2−a2 cos−1(a/b) , a < b , √ a2−b2 cosh−1(a/b) , a > b . In this paper, we find the greatest values α1, α2, α3 and α4, and the least values β1, β2, β3 and β4 such that the double inequalities α1SAH(a, b) + (1 − α1)C(a, b) < A(a, b) < β1SAH(a, b) + (1 − β1)C(a, b), α2SHA(a, b) + (1 − α2)C(a, b) < A(a, b) < β2SHA(a, b) + (1 − β2)C(a, b), α3SCA(a, b) + (1 − α3)H(a, b) < A(a, b) < β...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Nonlinear Sciences and Applications

سال: 2016

ISSN: 2008-1901

DOI: 10.22436/jnsa.009.04.11